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We consider the classes of holomorphic functions whose radial derivative of
order r lics in the unit ball of the Hardy space H,(B,) or the Bergman space
A,(B,). For these classes we calculate the linear and Gel'fand N-widths in C(S,),
where S, is the sphere in € of radius O < p < 1. Some results are obtained for
analogous problems in polydiscs and for 2m-periodic functions of one variable
holomorphic in a strip. @ 1995 Academic Press, Tne.

INTRODUCTION

Let A be a subset of a normed linear space X. The Kolmogorov
N-width is defined by

dy( A, X) = inf sup inf [[x — yll,
Xn xeq YEXN
where X, runs over all N-dimensional subspaces of X. Denote by
Z(H, X) the class of all continuous linear operators from H to X, where
H and X are normed linear spaces. Let BH be the closed unit bail of .
For T € Z(H, X) set

dy(T) =dy(T(BH), X).
The linear N-width is given by
Ay( A, X) = inf suplix — Pyxl|,

Py xeA
where P, runs over all bounded linear operators mapping X into X,
whose range has dimension N or less. Assume that 0 € A. The Gel'fand
N-width is defined by

dV(A, X) = inf sup Ixl,
x* xedAnx™
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where the infimum is taken over all subspaces X" of X of codimension
N. Various properties of these N-widths (and others) may be found in [1].
Let B, be the unit ball of C”"

h
B, = {z = (2,...,2,) €C": zI" = ¥ Iz,)* < 1>,
k=1

and S, the sphere of radius p

S, ={zeC": |z| = p}
(if p = 1 we write S). The Hardy space H,(B,) is the set of holomorphic
functions in B, which satisfy

p
ng = swp ([15=) ()] <= 1<p <o

0<r<l B

flle.cs,, = sup f(2)],

ZEB,

where o is the probability measure on the sphere § which is invariant
with respect to the orthogonal group O(2n). The Bergman space A (B,) is
the set of holomorphic functions in B, which satisfy the condition

t/p
”f”A,,(B,,J = (fBIf(z)V)du(z)) < =,

where v is the normalized Lebesgue measure in B, (A(B,) = H.(B,)).
Let f(z) be a holomorphic function in B, and

f(z) = X F(2)

s=0

be a homogeneous decomposition of f. The radial derivative of order r is
defined by

x< o !

R'f(z) = ; MR(Z)

(for r = 1 see [2, Chap. 6]). Let BX be the closed unit ball of a normed
linear space X. We denote by H#,(B,) and A%, (B,) the classes of

holomorphic functions in B, for which #’f lie in BH (B,) and BA(B,),
respectively.
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The exact values of dN(Hﬂ;(Bn), LP(SP)) were obtained in [3]. When
n=1 1<g<p<x>and E is a compact subset of B,, the values of
dy(BH(B)), L (E)) were determined in [4] (for E = S, see also [S]).

The first result for the classes of holomorphic functions concerning the
case when p < g appeared in [6] where the values of d¥(BH,(B,),C(S,)
and Ay (BH,(B,),C(S,)) were obtained (more precisely, for some subse-
quence of N). The method of proof, as noted by V. M. Tikhomirov, was
very similar to the one used in Ismagilov’s Theorem [7] (see also [1]). In
Section 1 we prove a theorem dual to the Ismagilov Theorem. Using this
result, in Section 2 we obtain the values of the linear and Gel'fand
N-widths of the classes H#;(B,) and A#;(B,) in C(S,).

Section 3 is devoted to analogous problems in polydiscs. Finally in
Section 4 we calculate the N-widths of holomorphic functions in the
annulus

A ={ze€C:R "< |z]| <R}, R>1,
and 2-periodic functions holomorphic in the strip

D, ={ze C:|Imz| <HJ}.

1. A THEOREM DUAL TO ISMAGILOV'S THEOREM

Let E be a compact set, u a positive probability measure defined on £
and T € #(H,C(E)). Denote by T, the operator T regarded as an
operator from H into L,(E, p). Assume that

Tl')Tﬂd’jzAjd’, j=1,2,...,

where A, > A, > - > 0, and that ¢, ¢,,... is a complete orthonormal
basis for the range of 7,7, (a sufficient condition is that T,, be a compact
operator).

THEOREM 1. For T as above

T_oniiA, <dM(T(BH),C(E))

— A(T(BH),C(E)) < sipy| T |(T8)(2)] -

zek j=N+1

Proof. Since Ker TyT, = Ker T,, = Ker T we shall assume, without loss
of generality, that ¢,, ¢,,... is a complete orthonormal basis for H. Set
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i, = T¢;. Let us show that for all z € £

L () <7 = ( sup 17l.) (1)
i=1

il <1

(we denote by ||-|l. the norm in C(E) and by |- |l;; the norm in H). Let
z € E and m € N. Then for h == £ {(z)¢, € H we have

=) lw,(2)|" = Al

j=1

IThll. = sup | 3 ¢ (z2)u(s)
Jj=1

sek |

Thus for 4 # 0

I Thll

[lally < m

< T
Consequently for all z € E and all m € N the inequality
Y ()] <iTI?
j=1

holds. So (1) is proved.
Set

It is easy to check that forall x € H and alt z € E
(Tx)(z) = (x,h.}),.
Denote by ¢: £ — H the mapping
o(z) = h..
Then
[0z, oM (3) dnly) = [ (TR V() dr(y)
= (T()h:"r(ld)j)l.:(l:\u)

= (h:,T(',T‘,qu)” = Ajd/j(z)‘




N-WIDTHS OF HOLOMORPHIC FUNCTIONS 139

Furthermore
('l'j, !I’/k)LI(E,,,L) = A; 8.

By the Ismagilov Theorem we obtain

VT oA sd(m) s sy B {(Te)o)f
j=N+1 Z€E | j=N+1

From duality

dy(T') =d(T) == inf sup |Thl.,
XN peHox™

where the infimum is taken over all subspaces X" of H of codimension
N. Since H is a Hilbert space

dy(T') =d"(T(BH),C(E)) = A\(T(BH),C(E)).

The theorem is proved. |

COROLLARY 1. Assume that the conditions of Theorem 1-hold and X, is
any r-dimensional subspace of C(E) such that X, L T(H) in LAE, p). Then

‘/ 5 A, <dV*(T(BH) + X,,C(E)) = A, (T(BH) + X,,C(E))
Jj=N+1

< sup Y I(T¢j)(z)|2.

z€E j=N+1

Proof. Let e,...,e, be an orthonormal basis for X, in L,(E, ).
Denote by H, , the Hilbert space of elements {f, g}, f € H, g € X, with
inner product

({fl,gl}’{fzagz})n,_, =(fi, i)y te Z ngj’ £>0,

j=1

where

& = chej, 8 = Zdjej'
j=t

Jj=1

Put L{f, g} := Tf + g. Denote by L, the operator L as an operator from
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H, , into L,(E, pn). Then

LyLi(f. 8} = {T(')Tuf’ £ lg}'
Set
¢ = {0’ 871/26)_}1 =11 ¢= {4,}.7”0}, j=r+1,....

The elements ¢, ¢,,... form a complete orthonormal basis for the range
of L')L, and

LyLog = elg, j=1,...r, LyLyg,=A_,¢, Jj=r+1,....

From Theorem 1 for &£ < A, ! we have
dVN*"(L(BH, ,),C(E)) = 2 AL

Since T(BH) + X, D L(BH, )

dV*"(T(BH) + X,,C(E)) = d"*"(L(BH, ,),C(E)) = ‘/ i A
j=N+1

The equality
dN*’(T(BH) +X,,C(E)) = ay, (T(BH) + X,,C(E))

follows from the fact that H is a Hilbert space (compare with Proposition
8.8 {1, p. 33]D. It is easy to show that

M. (T(BH) + X,,C(E)) < A\(T(BH),C(E)).

Now the upper bound follows directly from Theorem 1. The corollary is
proved. ||

Let H be a Hilbert space of functions defined on some set (2. A
function K(z,w) defined on Q2 X 2 is called a reproducing kernel of H if
for each w € 2, K(z,w) € H and for all f€ H

fw) = (fC) KCw)) -
[t is easily seen that

K(z,w) = K(w, z).
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Let £ C {2 be a compact with positive probability measure u. Suppose
that Tf := f,. is a bounded linear operator from H to C(E).

THEOREM 2. Let H and E be as above. Assume that ¢, ¢,,... is a
complete orthonormal basis for H and X, is any r-dimensional subspace of
C(E) such that X, L Hin L,(E, w). If ¢,, ¢, ... is an orthogonal system in
Ly(E, p)and A; = i (Pj“iz(g_”_) form a non-increasing sequence, then

]/ Y. A <d¥'(BH + X,,C(E))
j=N+1
=/\N+,(BH+X,,C(E))ssup]/ Y le(a)]
zek J=N+1

Proof. Put T,f = f . Let us consider T, as an operator from H into
L,(E, u). For all g € L,(E, ) we have

(Tog)(w) = ((Tog) (), K(-w))y = (8(')’T<»K('»W))L3<E,m

= [2(2)K(z,w)dp(z) = [ K(w,2)g(2) du(2).
E E

Thus the eigenvalue—eigenfunction problem

ToTof = Af
takes the form
[ K(w.2)f(2) diul 2) = Af(w). (2)
Since ¢y, ¢,,... is a complete orthonormal basis for H the representation

K(z,w) = Y o(2)@(w)
j=1

holds. In view of the orthogonality of the system ¢, ¢,,... in L,(E, ) we
have

L;K(W,Z)‘P[(z) du(z) = '\l"PI'(W)'

Thus A; is an eigenvalue and ¢; is an eigenfunction for Eq. (2). Now the

theorem follows from Corollary 1. |
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2. N-WipTHS OF H#;(B,) AND AR5(B,)
Set N, = L™, (" e ') Note that N, = dim 2" _, where 2" is the
space of n-variable polynomlals of degree m or less.

THEOREM 3.
(i) Foral 0 <p<landallm=r>0

d"~(H#;(B,),C(S,))
= )‘NM(H.%Z’(B,,),C(S,J))
* ((m —r+s)!)2(n +m—1+s)! | -
m — Z 3 p.s .
(n 1) 520 ((m +35)1)
(i) Forall 0 <p<landallm=r =1
d"(A#;(B,),C(S,))
= Ay (AR5(B,),C(S,))

m(% Xj: ((m—r+s))(n+m+s)! ZX)I/b.

Cs=0 (("”*'“5)!)3

(iii) For all

n 1/(2m)
o< (i
P n+m

d"~(BA,(B,),C(S,))

I

/\NM(BAZ(Bn)’C(Sp)) = p’"(—! i

NCEDIE
m " _ /2
FﬁW((";m)_;%Tgﬁ(?)"“)' (3

Proof. For multiindex a = (a,,..., @,) and z € C” set

@ a= g e g lal = a, + - +a,, al=qa - a,l,

D, = d/dz, D®=D{ - D,

Zz
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Denote by # the space of holomorphic functions in B, for which
(D*fX0) =0, la|l =0,...,r — 1, and #’f € H,(B,). It is known (see [2))
that functions from H,(B,) have finite boundary values almost every-
where. Moreover H,(B,) can be considered as a Hilbert space with inner
product

(f.8)Hys, = fsf(Z)Hz_)da(Z)-

Thus % is a Hilbert space with inner product

(f.8) = (Ff, 28y,

Let f,g €%, and

f(z)y= Y c,z% g(z)= Y d,z°

lal=r jal=r

Since monomials are orthogonal in H,(B,) and

afy, = P Diat
Nz W,c8,) = (n—1+ [al)!
we have
- lae) ! : (n—D'la!
(f.8) = ux%r((lal —r)!) (n—-1+ |a|)!C(, ar

It is easily verified that

TS,

= ((lal =r)\ (n =1+ lal)!
( ) (n— Hla!

is the reproducing kernel of JZ.
Let us consider the space L,(S,a,), where ¢, is the probability
measure on S, which is invariant with respect to the orthogonal group

OQ2n). Set for |al = r

_ _ o ' 1/2
ou(2) = (lal r)!((n 1+ | l)') o

(n—1)ea!

la)!

The functions ¢ (z) form a complete orthonormal basis for /#,. Moreover
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these functions are orthogonal in L,(S,, o,) and
2 2
”‘pa”Lz(S“.(rﬂ) = j;l(pa(z), do;)(z)
s,

2 lal —r)1\*
=fs|(p,,(p§)| do(¢) = (L__';FL) palel.

The number of different monomials z* with |a| = s is equal to (" M ‘).
As H#}(B,) = B%, + 2, #, LP, in Ly(S,,a), and dim £, = N, we
have by Theorem 2

(e
An

/2
(H#5(B,),C(S,))

™

< d"~(H#;(B,),C(S,))

i

(al =)\ (n =1+ lal)! o .
( ) TEN T ‘

SSUp( Y

ZES‘, lal=m Ial’

Using the equation

s!
5
Y 2%l =121,

lal=s

we obtain
d"(H#;(B,),C(S,))

= A (H3(B,).C(S,)) = ( x (9—_1)(" e 1)p“)m

!
s=m -

1

xw
= ™ 'Z
ts=0

((m — r+s)!)2(n +m—1+s)t v
((m + )1’ '

To prove (ii) and (iii) we consider the space %, of holomorphic functions
in B, for which (D“fX0) = 0, |al = 0,...,r — 1 and #'f € A,(B,). %, is
a Hilbert space with inner product

(f+8) = (R'F, HE) ayny = fB Rf(2)Hg(z) dv(z).
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Analogous to the previous case, we can show that the functions

+ leal

n
b (2) = || —— @ (2)

form a complete orthonormal basis for 4, and orthogonal system in
L,(S,, a,). Furthermore

n+ lal ((m —r)!)2

2 2 .
”lﬁa”Lz(sﬂ.(r“] = PI p ol = p

lafe

Let r > 1 and s > r. Then

s+1-r\’ 2 n+s+1
(n+s+ )j—— s(n+s+1)( )s s<n+s,
s+ 1 s+ 1 s+ 1
Thus
n+s+1{(s+1-r)1\ n+s((s—r)y
A‘+]— ( ) ?.(s+1"S ( ) pZ.c___/\‘.
n (s + D! n s!

If r = 0 (in this case A#,(B,) = BA,(B,), then {1} is not in general a
non-increasing sequence. But if ((n + m)/n)p*™ < 1 then for all s > m
and all g <m, A, 2 A,. Now (ii) and the first two equations of (3) follow
from Theorem 2 in the same way as in the case of (i). Denote by

d),,(m,p) i Z (n +Zl+s)p2x'

y=1

It easily verified that

@,(m. p) = ——1—)—( g OO (e

(1-p gV Fs/m

So (iii) is proved. |

Remark. The referee informed me that in the case n = | the exact
values of N-widths of the Bergman classes were obtained in [8].

For n = 1 the class H#5(B,) coincides with the class BH!, defined as
the set of all holomorphic functions in B, for which f'(z) € BH(B)).
The set of all holomorphic functions in B, for which f"(z) € BA,(B,) we
denote by BAL. If r > 1 the classes BA, and AI(B|) are different.
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Nevertheless the method of Theorem 2 can be applied. Thus we obtain the
following result.
THEOREM 4. Let 0 < p < 1. Then:
() foral Nzr=0

d¥(BH;,C(S,)) = Av(BHS,C(S,))

S (N =r+s)!
- f (E( (N +s)!

s=0

2 172
pZS) :

(ii) foral N>r>1

dN(BArz’C(Sp)) = )\N(BAE,C(S;J))

o (N —r+s)! : 5
5 o)

1/2

It

3. THE N-WIDTHS FOR HARDY AND BERGMAN CLASSES
IN POLYDISCS
Set
Ur={zeC": |z, <1,...,1z,] <1},
T"={zeC"lz,{ =1,...,1z,] =1},
Tr={zeC" |z;l = p,,....1z,| =p,},

P

where p=(p,,...,p,) and 0 < p, <1, j=1,...,n. Denote by H,(U")
the set of all holomorphic functions in U” for which

5

I/
W Wirywey = sup (f,\ulf(rz)lz d/.L(Z)) < o,

D<r<l

where u(z) is the normalized Lebesgue measure in T". We shall denote by
A,(U") the set of all holomorphic functions in U" for which

2

2 v
il = ([ 1A do(2)) <=

where o(z) is the normalized Lebesgue measurc in U”. The spaces
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H,(U") and A,(U") are Hilbert spaces with the reproducing kernels

(1 _lel)_‘ (b -z, W, )Al’ H = Hy(U"),

n'n

(1-zw) " (1 -zm) ", H=A,U")

n"n

Ky(z,w) =

(the details can be found in [9]).
THEOREM 5. Let p=(py,...,p,), 0 < p <L
(i) Assume that o'V, ..., «™) are the N largest terms of the sequence
{ p2e}. Then
d¥(BH,(U"),C(T;)) = Ay(BHy)(U"),C(T;))
N 172
Syt -1 ol
={(1-p}) - (1-p) - Lp"
s=1
(4)

(ii) Assume that aV,..., a'N) are the N largest terms of the sequence
{k,p°), where k, = (a) + 1)---(a, + 1). Then

d™(BA,(U"),C(T}")) = Ay(BA,(U"),C(T}))

-

-2 -2 N I/h
= (1 _pll) - (] _pnl) < Z kampz"m

s=1

Proof. Let us prove (i). The monomials z“ form a complete orthonor-
mal basis in H,(U"). They are also an orthogonal system in L,(T, u,),
where w, is the normalized Lebesgue measure in 7,". Moreover

2a

2
“Z"“L:(’l;,".“,,) =p

2
and for z € T", |z%]° = p*“. From Theorem 2 we have

P’

1/2
aV(BH(U").C(T7)) = M (BHUM).C(T7)) = ( £ p2)

a&T

where 7= {a'",..., @™} Now (i) follows from the representation

(1-p}) ' (1-p}) "= ¥ o~

640.82:1-11
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Using the representation

(1-p2) " (1=p2) "= ¥ k,p*, (5)

lal=0

a similar argument proves (i). |}
We can obtain a more precise result in the case p, = -+ = p,.
THEOREM 6. Let p, = -+ = p, =p and 0 < p < 1. Then:
() for N,_, <N <N,
d"(BH,(U"),C(T)) = Ay(BH,(U"),C(T;"))

m— n+m-—1 -n
), '(Nm—N+( b )(1—p2)

s 1/2
") (=)
-1 5 .
< ramls )P’“") :
s=0

(ii) forn > 2 and
0<p<m(m/m+1)"" (6)
d™n(BA,(U™),C(T;))
= Ay, (BAL(U"), C(T}))
(Zn +m - 1)”{3 (-1 (Zn - 1)pzs)l/2.

2n -1 oo 1 +s/m §

m

p
(1-9%)
Proof. The sequence p2'®! is a non-increasing sequence for |a| — .

The number of different multiindexes a with [a| = s is equal to (" M ').
By (4) we have for N,,_| <N < N,

I

" (BH,(U"),C(T)))
= Av(BH,(U™),C(T)))

m—2 1/2
_ ((1 —pz)_" -y (n +s—1)p2x_(N_Nm])p2(m—l))

o\ on—1

% 1/2
= _ Am—1) n+s-—1} 2
((Nm N)p +S§n( .1 )p ) :
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Now (i) follows from equations

i (n +s—1)p2s

n—1

myw (n+m+s—1) 2 m
=p’ Z(" " )p2 = p*"®,_(m, p)

e N () P (g

To prove (ii) we will first prove that if the condition (6) holds, then for
all |B| = m and all |a| <m

kﬂpz'ﬁ’ <k, p?el, (7)

In view of the monotone decreasing property of y(x) == x(x/n + 1)7" for
x> 2and n > 2 we have

p? < max{y(1),y(2)} < 1/2.
Consequently for all s > 1
(s + Dp* <sp* 2.
Thus for each |B| > m choosing any g; > 1 we will have
kop?Bl < kg p?#,

where B =(B,,..., 8 — 1,..., B,). Continuing this process we will find
B* with |8*{ = m for which

9 p* nooa,
kgp*Pl < kge p?! Pl < (m/n + 1) p*.
On the other hand, if [a| < m then in view of the monotone decreasing of

the sequence {sp** 2} and by (6) we obtain

5

ka p2|a{ > (|a| + l)p?.\u\ > mp2mf- > (m/n + 1)"p2m.

So (7) is proved.
From Theorem 5 it follows that
d¥(BA,(U"),C(T)) = Ay, (BA,(U"),C(T)"))
m— | 172

=0 =p) "= T ket =d.

la|=0
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By (5)
_[2n+s5s—1
;%;ka_( 2n =1 )
Therefore
2 ~ [(2n+5—1 25 _ me 2n+s+m—13} ,,
d’,;( 2n -1 )" P ;( 2 -1 )p
s=m s=0(
= p*"®,, _(m, p)

- pZm(l _ pz)‘“(zn +m — l)zril (_1)S (Zn — l)pr‘

2n — 1 g 1+s/m S

4, N-WIDTHS OF HOLOMORPHIC FUNCTIONS OF ONE VARIABLE

Denote by H, the space of holomorphic functions in Ay
P
flzy = X az

which satisfy the condition

4+ x

Y ylal® <,

§= -

where {y} is a sequence of non-negative numbers such that
liminf, , ;. %" > R% Set I':={s: y, = 0} and r := card I
The space

+ %
H) = {f(z) = ) a2’ €H,a =0,j€ F}
is a Hilbert space with inner product

(f.6)= T xab,

y=—=

where

fz)= ¥ az ga)= T b2

5= §= - %
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Moreover the space H) has the reproducing kernel

K(z,w) = Y v 'z'w".

serl

Set BH, = BH) + %, where &, = (¥, ra,z°}. This convenient form
for generalization of certain classes in the case of the unit disk was
proposed by Fisher and Micchelli [10].

For 1l <p<R and k=>r set olp)={s,...,s,_,0UT, where
{s;,..., 5., are the k — r largest terms of the sequence

. pr +p42s
% 2 sel"

THEOREM 7. Assume that foralls € Ny, =y

—5"

@O N2>+ 1/2and 0 € o,y_(p), then
d*N"'(BH,,C(4,)) = Ay BH,,C(4,))

B 1/2
B pZS + p 2s
= Z 'YS 2 °

sEoan_(p)

Gi) If N=r/2 and 0 & o,,( p), then

d*V(BH,,C(4,)) = \,n(BH,,C(4,))

2s -2s 172
Pt
=lvw+ X w'— .

s€ayn(p) 2
Proof.  Let us prove (i). The functions
ol2) =y ', serl

form a complete orthonormal basis for H,. Denote by L,(44,) a Hilbert
space of functions defined on the boundary of 4, with inner product

.___1_ 2"[ ol oe®) + Lia "_-—TT](M
(f.g) = %f“ f(pe®)g(pe®) + f(p e )g(p'e’’)| db.
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It is easily seen that ¢, form an orthogonal system in L,(4A,) and
2s -2s

Y
R

From Theorem 2 follows

1/2
» p25 + p—Zs /
r %' =

s€ayn_(p)

<d*"'(BH,,C(4,))

1/2

1
= )‘ZN—I(BHV’C(AP)) < sup (5 b Y (2l + 1zl 77)

z7€44, st o,y p)

2
» p2: +p 2
=l X %' —s
s€oan_(p)
Part (ii) is proved in a similar way. ||

For p = 1 the analogous application of Theorem 2 gives

THEOREM 8. Forall N> r

1/2
d"(BH,,C(4,)) = Ay(BH,,C(4))) = ( )y y;') .
s&opn(1)
Now we consider some examples of the spaces H,. Denote by H,(Ag)
the class of holomorphic functions in A, for which

W flleryca = sup
1<p<R

b o 2 o 1/2
[z L7 1oen) 1o as) <=
Let A,(Ag) be the class of holomorphic functions in 4, for which

1/2
< oo,

Il fllayam = ([A If(z)|2 dn(z)

where 7(z) is normalized Lebesgue measure in Az. Let us consider the
classes BH;(Ag) and BAL(Ag), which are the sets of holomorphic func-
tions in A, such that f)(z) lies in BH,(A4g) and BA,(Ag), respectively.
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It can be easily shown that the class BH;(4g) coincides with BH, for

RZ(s—r) + R*Z(sfr)
2 b

Y= (s(s = 1) (s —r+ 1))

and BA%(Ag) coincides with BH , where for r > 1

R2(s'fr+]) + R72(57r+ 1)

yo=(s(s — 1) (s —r+2))(s —r+1)

R2 _ R-?.
and for r = 0 (that is for BA,(Ag))
» R2(s+]) + R~2(:+I) 4IOgR
v, =(s+1) RT R , s+ —1, y,]=———————R2_R_2.

We give some more examples of the classes BH,. Let H,(D,) and
A,(D,,;) be the sets of all 2z-periodic holomorphic functions in D,, which
satisfy the conditions

1 . , 1/2
If iy, = sup (;,;f(f [If(xHh)lz+|f(x—ih)|“]dX) <

O<h<H

and

5

1 2w rH 2 v
Wl ayp, = (mfo f«Hlf(x'*‘Y), d"dJ’) < e,

respectively. Denote by BH](D,,) and BA%(D,,) the sets of all 2 m-periodic
holomorphic functions in D, for which f"X(z) lie in BHXD,) and
BA,(Dy,), respectively.

To find the linear and Gel'fand N-widths of BH;(D,,) and BA(D,,) in
the space C(D,), 0 < h < H, we use the map z = (1/i)log w. Then the
original problem reduces to the one for BH, with R = ¢' and the space
C(4,) with p = ", where

v, = 5% cosh(2sH)

in the case of BHj(D,,) and

1
= —s% " 'sinh(2sH
%= 3 (2sH)

in the case of BAY(D,,).
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By Theorems 7 and 8 we obtain the following result.

THEOREM 9. Letr > 0.
() Forall 0 <h < H

d*N Y (BH3(Dy),C(D,)) = An_(BHI(Dy),C(Dy))
[ > cosh(2sh) )]/2

It

2 Y

s $¥ cosh(2sH)
dzN_](BArZ(DH)’C(Dh)) = /\?.N—I(BArZ(DH)’C(Dh))
= cosh(2sh) )'/2

= 2H‘/2( )y

L,y 52 Tsinh(2sH)

(ii)) Forall H> 0

dZN(BHzr(DH)’C[OsZ’”])
An(BH;(Dy),C[0,27])

Il

1 = 1 12
- (Nzrcosh(zw) + zzﬁiﬁi) :
d*"(BA5(Dy),C[0,27])
= han(BA3(Dy).C0,27])
2 = 1 12
N Tsinnzni) T4 L Tamh(2oH) )

— HI/Z(
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